Donald William Chakeres

Department of Radiology, The Ohio State University, Columbus, Ohio, USA

Published: September 30, 2016

**Abstract**: We evaluate three of the quantum constants of hydrogen, the electron, e−, the Bohr radius, a0, and the Rydberg constants, R∞, as natural unit frequency equivalents, v. This is equivalent to Planck’s constant, h, the speed of light, c, and the electron charge, e, all scaled to 1 similar in concept to the Hartree atomic, and Planck units. These frequency ratios are analyzed as fundamental coupling constants. We recognize that the ratio of the product of 8π2, the ve− times the vR divided by va0 squared equals 1. This is a power law defining Planck’s constant in a dimensionless domain as 1. We also find that all of the possible dimensionless and dimensioned ratios correspond to other constants or classic relationships, and are systematically inter-related by multiple power laws to the fine structure constant, α; and the geometric factors 2, and π. One is related to an angular momentum scaled by Planck’s constant, and another is the kinetic energy law. There are harmonic sinusoidal relationships based on 2π circle geometry. In the dimensionless domain, α is equivalent to the free space constant of permeability, and its reciprocal to permittivity. If any two quanta are known, all of the others can be derived within power laws. This demonstrates that 8π2 represents the logical geometric conversion factor that links the Euclid geometric factors/three dimensional space, and the quantum domain. We conclude that the relative scale and organization of many of the fundamental constants even beyond hydrogen are related to a unified power law system defined by only three physical quanta of ve− , vR,and va0 .

**Keywords**: Fundamental Physical Constants, Unification Models, Hydrogen, Electron, Bohr Radius, Rydberg Constant, Fine Structure Constant

How to cite this paper: Chakeres, D.W. (2016) Fundamental Harmonic Power Laws Relating the Frequency Equivalents of the Electron, Bohr Radius, Rydberg Constant with the Fine Structure, Planck’s Constant, 2 and π. Journal of Modern Physics, 7, 1801-1810. http://dx.doi.org/10.4236/jmp.2016.713160